Warning: mkdir(): No space left on device in /var/www/tg-me/post.php on line 37

Warning: file_put_contents(aCache/aDaily/post/datarascals/--): Failed to open stream: No such file or directory in /var/www/tg-me/post.php on line 50
Дата канальи — про «специалистов» в данных / ML / AI | Telegram Webview: datarascals/211 -
Telegram Group & Telegram Channel
В комментах под постом про связь оптимизации BCE и ростом NDCG меня попросили рассказать про связь минимизация логлосс и максимизация ROCAUC 🤓

Начну издалека и разобью ответ на несколько постов.

Не из вредности, а из-за того что в ROCAUC как правило, не углубляются и оттого возможны оптические иллюзии (назовем пока так) 🌈

Не верите?

Ну вот для разминки 🏋‍♂️ пара задачек от Александра Дьяконова

Раз
Два

И одна прямиком из статьи:

Если ваш алгоритм максимизирует ROCAUC, максимизирует ли он одновременно площадь под кривой Precision-Recall (AUCPR или AP == average precision)?

Короткий ответ — нет

Хотя кривые из пространства (FPR, TPR) однозначно переводятся в кривые из пространства (Recall, Precision), более того, если одна ROC-кривая везде лучше (или равна) другой (слева-вверху, в литературе называют dominate 🥊) то и в координатах (Recall, Precision) это сохранится, причем наоборот тоже работает.

Пример двух пересекающихся ROC-кривых, в которых при переводе в (Recall, Precision) радикально меняется соотношение площадей под графиками в статье The Relationship Between Precision-Recall and ROC Curves (2006)

Конечно, таких фокусов хочется избежать 🧙‍♂️, для этого все же нужно вспомнить про задачу — редко когда нам надо одинаково хорошо уметь ранжировать по всей выборке, чаще именно ранжировать нужно уметь в каком-то регионе (например по FPR), поэтому у ROCAUC множество модификаций — PAUC (Partial AUC), TPAUC, OPAUC, SAUC, gAUC (generalised AUC), GAUC (group AUC), GAUC@k, LAUC@k (limited AUC) и всякие другие.

Здесь снова вспоминается тезис Александра Дьяконова из неопубликованного (а мб он уже опубликовал?) учебника о том что все банки используют GINI (он же ROCAUC) в задаче PD (определения вероятности наступления дефолта), а ROCAUC не то чтобы в этом случае сильно подходит — IMHO, ровно потому что ранжирование интересно уже выше отсечки одобрения кредита (и там калиброванный PD войдет уже в EL).

Но не скорингом единым — PAUC и другие модификации широко используются в рекомендашках и в поиске (да, и в RAG тоже -- на этапе retrieval).

Если хотите с азов 💾, то про сами сами ROC-кривые, их доверительные интервалы, обобщения на мульткласс можно почитать здесь а про связь ROCAUC с вероятностью корректно ранжировать — в журнале по радиологии за 1982 год.

PS: Если с researchgate сложности - маякните единорожкой, выложу pdf’ки в комментариях

PPS: про связь ROCAUC и логлосс уже в следующем посте, пока лишь намекну статьей про DeepFM (таб. 2)

PPPS: уже почти не удивляюсь когда вижу статью с названием Deep ROC analysis <...> в приличном журнале за 2021 год 😱, вот и вы не удивляйтесь этому посту 😆
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/datarascals/211
Create:
Last Update:

В комментах под постом про связь оптимизации BCE и ростом NDCG меня попросили рассказать про связь минимизация логлосс и максимизация ROCAUC 🤓

Начну издалека и разобью ответ на несколько постов.

Не из вредности, а из-за того что в ROCAUC как правило, не углубляются и оттого возможны оптические иллюзии (назовем пока так) 🌈

Не верите?

Ну вот для разминки 🏋‍♂️ пара задачек от Александра Дьяконова

Раз
Два

И одна прямиком из статьи:

Если ваш алгоритм максимизирует ROCAUC, максимизирует ли он одновременно площадь под кривой Precision-Recall (AUCPR или AP == average precision)?

Короткий ответ — нет

Хотя кривые из пространства (FPR, TPR) однозначно переводятся в кривые из пространства (Recall, Precision), более того, если одна ROC-кривая везде лучше (или равна) другой (слева-вверху, в литературе называют dominate 🥊) то и в координатах (Recall, Precision) это сохранится, причем наоборот тоже работает.

Пример двух пересекающихся ROC-кривых, в которых при переводе в (Recall, Precision) радикально меняется соотношение площадей под графиками в статье The Relationship Between Precision-Recall and ROC Curves (2006)

Конечно, таких фокусов хочется избежать 🧙‍♂️, для этого все же нужно вспомнить про задачу — редко когда нам надо одинаково хорошо уметь ранжировать по всей выборке, чаще именно ранжировать нужно уметь в каком-то регионе (например по FPR), поэтому у ROCAUC множество модификаций — PAUC (Partial AUC), TPAUC, OPAUC, SAUC, gAUC (generalised AUC), GAUC (group AUC), GAUC@k, LAUC@k (limited AUC) и всякие другие.

Здесь снова вспоминается тезис Александра Дьяконова из неопубликованного (а мб он уже опубликовал?) учебника о том что все банки используют GINI (он же ROCAUC) в задаче PD (определения вероятности наступления дефолта), а ROCAUC не то чтобы в этом случае сильно подходит — IMHO, ровно потому что ранжирование интересно уже выше отсечки одобрения кредита (и там калиброванный PD войдет уже в EL).

Но не скорингом единым — PAUC и другие модификации широко используются в рекомендашках и в поиске (да, и в RAG тоже -- на этапе retrieval).

Если хотите с азов 💾, то про сами сами ROC-кривые, их доверительные интервалы, обобщения на мульткласс можно почитать здесь а про связь ROCAUC с вероятностью корректно ранжировать — в журнале по радиологии за 1982 год.

PS: Если с researchgate сложности - маякните единорожкой, выложу pdf’ки в комментариях

PPS: про связь ROCAUC и логлосс уже в следующем посте, пока лишь намекну статьей про DeepFM (таб. 2)

PPPS: уже почти не удивляюсь когда вижу статью с названием Deep ROC analysis <...> в приличном журнале за 2021 год 😱, вот и вы не удивляйтесь этому посту 😆

BY Дата канальи — про «специалистов» в данных / ML / AI




Share with your friend now:
tg-me.com/datarascals/211

View MORE
Open in Telegram


DATARASCALS Telegram Group Telegram | DID YOU KNOW?

Date: |

In many cases, the content resembled that of the marketplaces found on the dark web, a group of hidden websites that are popular among hackers and accessed using specific anonymising software.“We have recently been witnessing a 100 per cent-plus rise in Telegram usage by cybercriminals,” said Tal Samra, cyber threat analyst at Cyberint.The rise in nefarious activity comes as users flocked to the encrypted chat app earlier this year after changes to the privacy policy of Facebook-owned rival WhatsApp prompted many to seek out alternatives.

Why Telegram?

Telegram has no known backdoors and, even though it is come in for criticism for using proprietary encryption methods instead of open-source ones, those have yet to be compromised. While no messaging app can guarantee a 100% impermeable defense against determined attackers, Telegram is vulnerabilities are few and either theoretical or based on spoof files fooling users into actively enabling an attack.

DATARASCALS Telegram Group from jp


Telegram Дата канальи — про «специалистов» в данных / ML / AI
FROM USA